VALUATIONS OF p-ADIC REGULATORS OF CYCLIC CUBIC FIELDS

نویسنده

  • TOMMY HOFMANN
چکیده

We compute the p-adic regulator of cyclic cubic extensions of Q with discriminant up to 1016 for 3 < p < 100, and observe the distribution of the p-adic valuation of the regulators. We find that for almost all primes the observation matches the model that the entries in the regulator matrix are random elements with respect to the obvious restrictions. Based on this random matrix model a conjecture on the distribution of the valuations of p-adic regulators of cyclic cubic fields is stated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECTIVE p-ADIC COHOMOLOGY FOR CYCLIC CUBIC THREEFOLDS

This paper is an updated form of notes from a series of six lectures given at a summer school on p-adic cohomology held in Mainz in the fall of 2008. (They may be viewed as a sequel to the author’s notes from the Arizona Winter School in 2007 [51].) The goal of the notes is to describe how to use p-adic cohomology to make effective, provably correct numerical computations of zeta functions. Mor...

متن کامل

On the p-adic Beilinson conjecture for number fields

We formulate a conjectural p-adic analogue of Borel’s theorem relating regulators for higher K-groups of number fields to special values of the corresponding ζ-functions, using syntomic regulators and p-adic L-functions. We also formulate a corresponding conjecture for Artin motives, and state a conjecture about the precise relation between the p-adic and classical situations. Parts of the conj...

متن کامل

On 3-adic Valuations of Generalized Harmonic Numbers

We investigate 3-adic valuations of generalized harmonic numbers H n . These valuations are completely determined by the 3-adic expansion of n. Moreover, we also give 3-adic valuations of generalized alternating harmonic numbers.

متن کامل

Arithmetic Geometry Learning Seminar: Adic Spaces

1. January 12th – Motivation (Bhargav Bhatt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. January 26th – Huber rings (Rankeya Datta). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Semistable reduction for overconvergent F -isocrystals, III: Local semistable reduction at monomial valuations

We resolve the local semistable reduction problem for overconvergent F -isocrystals at monomial valuations (Abhyankar valuations of height 1 and residue transcendence degree 0). We first introduce a higher-dimensional analogue of the generic radius of convergence for a p-adic differential module, which obeys a convexity property. We then combine this convexity property with a form of the p-adic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015